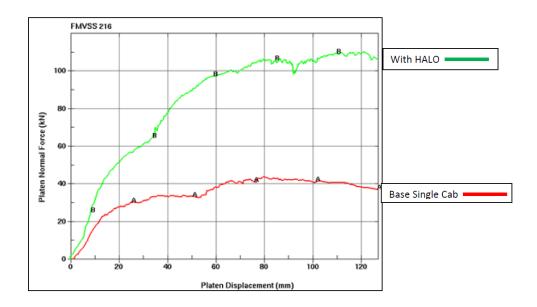


HALO™ Sistema de Protección Antivuelco - Reporte de Análisis SWR

Por favor encuentre la siguiente información relacionado al diseño y desempeño del HALO™ Sistema de Protección Antivuelco. En respuesta a la solicitud de información, Safety Engineering International le hace llegar nuestro reporte de análisis de una prueba de carga hecha bajo la norma FMVSS 216 en una camioneta cabina sencilla y el mismo modelo equipada con HALO ROPS.

La prueba de Fuerza en Techo Estático FMVSS 216 prescribe que una prensa de tamaño especifico sea colocada en un ángulo especifico en relación con el cuerpo del vehículo. El cuerpo del vehículo es después asegurado a la base de una estructura para estabilizarlo y no se mueva bajo la presión de la prensa. La prensa es después desplazada hacia el vehículo a un desplazamiento de 5" (127mm). La fuerza requerida para lograr este desplazamiento es medida para obtener el valor de carga máxima. Este valor es después dividido por el peso para darnos la relación fuerza-peso (SWR) de cualquier vehículo.


El modelo del vehículo usado para la simulación no tiene vidrio ni puertas incorporadas, pero si tiene el acoplamiento del poste A y B incorporado al nivel delantero. La cabina fue apoyada debajo del panel basculante y en ubicaciones debajo de los rieles del bastidor en ambas simulaciones. Después, la prensa aplico cargas a la superficie estructural del techo del vehículo con y sin HALO. La prensa se desplazó 5" en ambos casos. Capturas de la simulación de las posiciones iniciales y finales para ambas superficies, con y sin HALO, se muestran aquí:

En la gráfica de abajo, la letra B (línea verde) muestra la fuerza en kilos (kN) para el vehículo equipado con HALO con un pico en aproximadamente 110kN a casi 5" (120mm). La letra A (línea roja) muestra el vehículo sin HALO con un pico en aproximadamente 42kN con un desplazamiento de 3" (80mm).

Con esta información, y el peso vacío del vehículo, podemos calcular el SWR de cada vehículo en prueba. Usando un peso de 4032 lbs (1828kg), la cabina sin HALO tiene un SWR de 2.34, mientras que la equipada con HALO tiene un SWR de 6.13. Esto indica que el vehículo equipado con HALO tiene un incremento de SWR de un factor mayor a 2.

Vehicle Weight		Lbs/Kg
Single Cab		4032/1829
	Base Vehicle	HALO Equipped
Force lbs withstood	9441	24728
Resultant SWR	2.34	6.13

Desde estas simulaciones, más aparte 30 accidentes reales en la última década con vehículos cabina sencilla y doble equipados con HALO, estamos seguros que el SWR se incrementa a más de 4x y posiblemente más de 6x, como fue el caso en esta simulación.

A) Steel Properties of Material Used for H16 Toyota HALO Fabrication:

Structure	HALO Top Component
Material	2 In. Structural Steel Tube
ASTM	A513
Ultimate Tensile Strength	910 MPa
Yield Tensile Strength	511 MPa
Hardness Brinell	137-185

Structure	Internal Reinforcement Plates
Material	5mm Steel Plate
ASTM	A36
Ultimate Tensile Strength	469 MPa
Yield Tensile Strength	359 MPa
Hardness Brinell	119-159

Structure	Internal Reinforcement Plates
Material	3mm Steel Plate
ASTM	A36
Ultimate Tensile Strength	469 MPa
Yield Tensile Strength	359 MPa
Hardness Brinell	119-159

Structure	Internal Reinforcement Plates
Material	2mm Steel Plate
ASTM	Ramor 500
Ultimate Tensile Strength	1350 MPa
Yield Tensile Strength	1250 MPa
Hardness Brinell	490-460

B) Technical Sheet for Toyota HALO ROPS H16AKIT:

NAME	HALO™
MODEL:	H16AKIT
COMPABILITY:	TOYOTA HILUX 2018 - 2023
DESIGN AND DEVELOPMENT	SAFETY ENGINEERING INTERNATIONAL
PRODUCT DESCRIPTION:	ROLLOVER OCCUPANT PROTECTION SYSTEM
PRODUCT USE:	VEHICLE SAFETY EQUIPMENT FOR THE INTERNAL PROTECTION OF OCCUPANTS IN CASE OF A ROLLOVER.
PLACE OF MANUFACTURING:	MEXICO
PATENT AND COPYRIGHT:	USA #7717492 / MX #03-2016-120912494800-001
DIMESIONS (CM):	134.4 X 122.1 X 18.8
WEIGHT (KG)	41
COLOR:	BLACK
MAIN COMPONENTS:	EXTERNAL TUBE PROTECTION SYSTEM, INTERNAL REINFORCEMENT PLATE SYSTEM AND FAIRING
MAIN MATERIALS:	STRUCTURAL STEEL ASTM A36, RAMOR 500, STEEL TUBE A513 AND PLEXIGLASS
USEFUL LIFESPAN:	REINFORCEMENT PLATES: 10 YEARS / TUBE SYSTEM: 5 YEARS
TECHNICAL REQUIREMENTS:	PERFORATION OF B PILLARS (INTERNAL AND EXTERNAL), PERFORATION OF ROOF RAIL, CERTIFIED INSTALLER TECHNICIAN
INSTALATION METHOD:	RIVETS, NUTS, BOLTS AND GASKETS